Find all vertical asymptotes associated with the graph of each function
$\displaystyle{f\,(x) = \frac{x^2-9}{x^2-4}}$
$\displaystyle{f\,(x) = \frac{1}{x^2-2x}}$
$\displaystyle{f\,(x) = \frac{x^2+7x+10}{x^2-x-6}}$
$\displaystyle{f\,(x) = \frac{x}{(x+4)^2}}$
$\displaystyle{f\,(x) = \frac{x^2}{(x+4)^2}}$
Find all horizontal asymptotes associated with the graph of each function
$\displaystyle{f\,(x) = \frac{x^2-9}{x^2-4}}$
$\displaystyle{f\,(x) = \frac{1}{x^2-2x}}$
$\displaystyle{f\,(x) = \frac{3x^3-1}{x^3}}$
$\displaystyle{f\,(x) = \frac{x^3-4}{x^2+8}}$
Evaluate the following limits
$\displaystyle{\lim_{x \rightarrow 0^+} \frac{1}{x}}$
$\displaystyle{\lim_{x \rightarrow 0^-} \frac{1}{x}}$
$\displaystyle{\lim_{x \rightarrow \infty} \frac{1}{x}}$
$\displaystyle{\lim_{x \rightarrow -\infty} \frac{1}{x}}$
$\displaystyle{\lim_{x \rightarrow \infty} \frac{x^3}{1-x^4}}$
$\displaystyle{\lim_{x \rightarrow \infty} \frac{x^3}{1-x^3}}$
$\displaystyle{\lim_{x \rightarrow \infty} \frac{x^3}{1-x^2}}$
$\displaystyle{\lim_{x \rightarrow \pi/2^+} \tan x}$
$\displaystyle{\lim_{x \rightarrow 0^-} \csc x}$
$\displaystyle{\lim_{x \rightarrow -\infty} \textrm{Arctan } 2x}$
$\displaystyle{\lim_{x \rightarrow \infty} 2 \textrm{ Arctan } x}$
$\displaystyle{\lim_{x \rightarrow \infty} \textrm{ Arcsin} \frac{1}{x}}$
$\displaystyle{\lim_{x \rightarrow \infty} \ln \left( \frac{1}{x} \right)}$
$\displaystyle{\lim_{x \rightarrow \infty} \frac{x^3}{1-x^2}}$
$\displaystyle{\lim_{x \rightarrow -\infty} \frac{x^2}{4-x^2}}$
$\displaystyle{\lim_{x \rightarrow \infty} \frac{x}{x^2-4}}$
$\displaystyle{\lim_{x \rightarrow 1^-} \frac{x^3}{1-x^3}}$
$\displaystyle{\lim_{x \rightarrow -2} \frac{x^2}{x^2+4}}$
$\displaystyle{\lim_{x \rightarrow 3^-} \frac{|x^2-9|}{x-3}}$
$\displaystyle{\lim_{x \rightarrow 0^+} \csc x}$
$\displaystyle{\lim_{x \rightarrow \pi/4^-} \cot (2x)}$
$\displaystyle{\lim_{x \rightarrow \pi} \cos (\frac{1}{3} x)}$
Find the following limits, and then sketch the graph of $y=e^{1/x}$
$\displaystyle{\lim_{x \rightarrow \infty} e^{1/x}}$
$\displaystyle{\lim_{x \rightarrow -\infty} e^{1/x}}$
$\displaystyle{\lim_{x \rightarrow 0^-} e^{1/x}}$
$\displaystyle{\lim_{x \rightarrow 0^+} e^{1/x}}$
Evaluate the following limits
$\displaystyle{\lim_{x \rightarrow \infty} \frac{x^2+7x+10}{x^2-x-6}}$
$\displaystyle{\lim_{x \rightarrow -\infty} \frac{x^2-2x+1}{x+1}}$
$\displaystyle{\lim_{x \rightarrow \infty} \frac{2x^2-3}{x^2+1}}$
$\displaystyle{\lim_{x \rightarrow -3^+} \frac{x^3}{x^2-9}}$
$\displaystyle{\lim_{x \rightarrow 3} \frac{\sqrt{x^2-5} - 2}{x-3}}$
$\displaystyle{\lim_{x \rightarrow -2^+} \frac{x^3-3x}{x+2}}$
$\displaystyle{\lim_{x \rightarrow -\infty} \frac{-3x^3+x^2}{x^3-5}}$
$\displaystyle{\lim_{x \rightarrow 4^-} \frac{x^3-3x^2-4x}{x^3-4x^2+x-4}}$
$\displaystyle{\lim_{x \rightarrow -2^+} \frac{x^3-3x}{x+2}}$
$\displaystyle{\lim_{x \rightarrow -\infty} \frac{3-2x^3}{x^2+1}}$
$\displaystyle{\lim_{x \rightarrow 2\pi^+} \csc x}$
$\displaystyle{\lim_{x \rightarrow -\infty} 2 \textrm{ Arctan } \frac{x}{2}}$
$\displaystyle{\lim_{x \rightarrow -\infty} \frac{-3x^3+x^2}{x^3-5}}$
$\displaystyle{\lim_{x \rightarrow \infty} \textrm{ Arctan } \frac{1}{x}}$
$\displaystyle{\lim_{x \rightarrow \infty} \ln \frac{1}{x}}$
$\displaystyle{\lim_{x \rightarrow \infty} e^{1/x}}$
$\displaystyle{\lim_{x \rightarrow 1^-} \frac{e^x}{x-1}}$
$\displaystyle{\lim_{x \rightarrow 0^-} \ln (x^2)}$
$\displaystyle{\lim_{x \rightarrow -\infty} \frac{4-x^3}{x^2+2x}}$
$\displaystyle{\lim_{x \rightarrow \infty} \frac{2x^2-4}{5-x^2}}$
$\displaystyle{\lim_{x \rightarrow -1} \textrm{Arcsin } \frac{x}{2}}$
$\displaystyle{\lim_{x \rightarrow 2^+} \frac{x^2-4}{x-2}}$
$\displaystyle{\lim_{x \rightarrow 2^-} \frac{x^3+8}{x^2-4}}$
$\displaystyle{\lim_{x \rightarrow -\infty} 2 \textrm{ Arctan } \frac{x}{2}}$
Evaluate the following limits
$\displaystyle{\lim_{x \rightarrow \infty} \frac{4-x^3}{2x^2+1}}$
$\displaystyle{\lim_{x \rightarrow -\infty} e^{1/2x}}$
$\displaystyle{\lim_{x \rightarrow -\infty} \frac{4-3x^2}{x^2-1}}$
$\displaystyle{\lim_{x \rightarrow 1^-} \frac{4-3x^2}{x^2-1}}$
$\displaystyle{\lim_{x \rightarrow 4} \frac{x^3-64}{x^2-16}}$
$\displaystyle{\lim_{x \rightarrow -\infty} \textrm{Arcsin } \left(\frac{1}{x} - \frac{1}{2} \right)}$
$\displaystyle{\lim_{x \rightarrow -\infty} \frac{1}{e^x}}$
$\displaystyle{\lim_{x \rightarrow \infty} \frac{3-e^x}{2e^x-1}}$
$\displaystyle{\lim_{x \rightarrow -\infty} \frac{x^2-x}{3-2x^2}}$
$\displaystyle{\lim_{x \rightarrow -2^+} \frac{x^3-8}{x^2-4}}$
$\displaystyle{\lim_{x \rightarrow 0^+} \frac{1}{x^2-x}}$
$\displaystyle{\lim_{x \rightarrow \infty} \frac{x^3}{x^2-4}}$
$\displaystyle{\lim_{x \rightarrow \pi^-} \csc x}$
$\displaystyle{\lim_{x \rightarrow 1^-} \frac{x^2}{x+1}}$
$\displaystyle{\lim_{x \rightarrow \infty} \frac{1-x^2}{3x^2}}$
$\displaystyle{\lim_{x \rightarrow -\infty} \frac{1-x^3}{3x^2}}$
$\displaystyle{\lim_{x \rightarrow 0} \tan x}$
$\displaystyle{\lim_{x \rightarrow -3^+} \frac{|3-x|}{x^2-9}}$
$\displaystyle{\lim_{x \rightarrow 2^-} \frac{x^3}{2x^2-8}}$
$\displaystyle{\lim_{x \rightarrow -2^-} \frac{x^3}{2x^2-8}}$
$\displaystyle{\lim_{x \rightarrow -\infty} \frac{1-x^3}{x^2+2}}$
$\displaystyle{\lim_{x \rightarrow \infty} \frac{1}{x}}$
$\displaystyle{\lim_{x \rightarrow \infty} \frac{2-3x^2}{x^2-2x}}$
$\displaystyle{\lim_{x \rightarrow 2^-} \frac{x}{x^2-4}}$
$\displaystyle{\lim_{x \rightarrow -3^+} \frac{x^3}{x^2-9}}$