The solutions $r_1$, $r_2$, $r_3$, $r_4$, and $r_5$ to the general quartic equation $ax^4+bx^3+cx^2+dx+e=0$ are given by the following formulae. (Note: Prepare to scroll to the right for a while!)
$$\begin{align} r_1 & =\frac{-a}{4}-\frac{1}{2}{\sqrt{\frac{a^{2} }{4}-\frac{2b}{3}+\frac{2^{\frac{1}{3} }\left(b^{2}-3ac+12d\right)}{3{\left(2b^{3}-9abc+27c^{2}+27a^{2}d-72bd+{\sqrt{-4{\left(b^{2}-3ac+12d\right)}^{3}+{\left(2b^{3}-9abc+27c^{2}+27a^{2}d-72bd\right)}^{2} } }\right)}^{\frac{1}{3} } }+\left(\frac{ {2b^{3}-9abc+27c^{2}+27a^{2}d-72bd+{\sqrt{-4{\left(b^{2}-3ac+12d\right)}^{3}+{\left(2b^{3}-9abc+27c^{2}+27a^{2}d-72bd\right)}^{2} } } } }{54}\right)^{\frac{1}{3} } } } \\ & -\frac{1}{2}{\sqrt{\frac{a^{2} }{2}-\frac{4b}{3}-\frac{2^{\frac{1}{3} }\left(b^{2}-3ac+12d\right)}{3{\left(2b^{3}-9abc+27c^{2}+27a^{2}d-72bd+{\sqrt{-4{\left(b^{2}-3ac+12d\right)}^{3}+{\left(2b^{3}-9abc+27c^{2}+27a^{2}d-72bd\right)}^{2} } }\right)}^{\frac{1}{3} } }-\left(\frac{ {2b^{3}-9abc+27c^{2}+27a^{2}d-72bd+{\sqrt{-4{\left(b^{2}-3ac+12d\right)}^{3}+{\left(2b^{3}-9abc+27c^{2}+27a^{2}d-72bd\right)}^{2} } } } }{54}\right)^{\frac{1}{3} }-\frac{-a^{3}+4ab-8c}{4{\sqrt{\frac{a^{2} }{4}-\frac{2b}{3}+\frac{2^{\frac{1}{3} }\left(b^{2}-3ac+12d\right)}{3{\left(2b^{3}-9abc+27c^{2}+27a^{2}d-72bd+{\sqrt{-4{\left(b^{2}-3ac+12d\right)}^{3}+{\left(2b^{3}-9abc+27c^{2}+27a^{2}d-72bd\right)}^{2} } }\right)}^{\frac{1}{3} } }+\left(\frac{ {2b^{3}-9abc+27c^{2}+27a^{2}d-72bd+{\sqrt{-4{\left(b^{2}-3ac+12d\right)}^{3}+{\left(2b^{3}-9abc+27c^{2}+27a^{2}d-72bd\right)}^{2} } } } }{54}\right)^{\frac{1}{3} } } } } } } \\ r_2 & =\frac{-a}{4}-\frac{1}{2}{\sqrt{\frac{a^{2} }{4}+\frac{2b}{3}+\frac{2^{\frac{1}{3} }\left(b^{2}-3ac+12d\right)}{3{\left(2b^{3}-9abc+27c^{2}+27a^{2}d-72bd+{\sqrt{-4{\left(b^{2}-3ac+12d\right)}^{3}+{\left(2b^{3}-9abc+27c^{2}+27a^{2}d-72bd\right)}^{2} } }\right)}^{\frac{1}{3} } }+\left(\frac{ {2b^{3}-9abc+27c^{2}+27a^{2}d-72bd+{\sqrt{-4{\left(b^{2}-3ac+12d\right)}^{3}+{\left(2b^{3}-9abc+27c^{2}+27a^{2}d-72bd\right)}^{2} } } } }{54}\right)^{\frac{1}{3} } } } \\ & -\frac{1}{2}{\sqrt{\frac{a^{2} }{2}-\frac{4b}{3}-\frac{2^{\frac{1}{3} }\left(b^{2}-3ac+12d\right)}{3{\left(2b^{3}-9abc+27c^{2}+27a^{2}d-72bd+{\sqrt{-4{\left(b^{2}-3ac+12d\right)}^{3}+{\left(2b^{3}-9abc+27c^{2}+27a^{2}d-72bd\right)}^{2} } }\right)}^{\frac{1}{3} } }-\left(\frac{ {2b^{3}-9abc+27c^{2}+27a^{2}d-72bd+{\sqrt{-4{\left(b^{2}-3ac+12d\right)}^{3}+{\left(2b^{3}-9abc+27c^{2}+27a^{2}d-72bd\right)}^{2} } } } }{54}\right)^{\frac{1}{3} }-\frac{-a^{3}+4ab-8c}{4{\sqrt{\frac{a^{2} }{4}-\frac{2b}{3}+\frac{2^{\frac{1}{3} }\left(b^{2}-3ac+12d\right)}{3{\left(2b^{3}-9abc+27c^{2}+27a^{2}d-72bd+{\sqrt{-4{\left(b^{2}-3ac+12d\right)}^{3}+{\left(2b^{3}-9abc+27c^{2}+27a^{2}d-72bd\right)}^{2} } }\right)}^{\frac{1}{3} } }+\left(\frac{ {2b^{3}-9abc+27c^{2}+27a^{2}d-72bd+{\sqrt{-4{\left(b^{2}-3ac+12d\right)}^{3}+{\left(2b^{3}-9abc+27c^{2}+27a^{2}d-72bd\right)}^{2} } } } }{54}\right)^{\frac{1}{3} } } } } } } \\ r_3 & =\frac{-a}{4}+\frac{1}{2}{\sqrt{\frac{a^{2} }{4}-\frac{2b}{3}+\frac{2^{\frac{1}{3} }\left(b^{2}-3ac+12d\right)}{3{\left(2b^{3}-9abc+27c^{2}+27a^{2}d-72bd+{\sqrt{-4{\left(b^{2}-3ac+12d\right)}^{3}+{\left(2b^{3}-9abc+27c^{2}+27a^{2}d-72bd\right)}^{2} } }\right)}^{\frac{1}{3} } }+\left(\frac{ {2b^{3}-9abc+27c^{2}+27a^{2}d-72bd+{\sqrt{-4{\left(b^{2}-3ac+12d\right)}^{3}+{\left(2b^{3}-9abc+27c^{2}+27a^{2}d-72bd\right)}^{2} } } } }{54}\right)^{\frac{1}{3} } } } \\ & -\frac{1}{2}{\sqrt{\frac{a^{2} }{2}-\frac{4b}{3}-\frac{2^{\frac{1}{3} }\left(b^{2}-3ac+12d\right)}{3{\left(2b^{3}-9abc+27c^{2}+27a^{2}d-72bd+{\sqrt{-4{\left(b^{2}-3ac+12d\right)}^{3}+{\left(2b^{3}-9abc+27c^{2}+27a^{2}d-72bd\right)}^{2} } }\right)}^{\frac{1}{3} } }-\left(\frac{ {2b^{3}-9abc+27c^{2}+27a^{2}d-72bd+{\sqrt{-4{\left(b^{2}-3ac+12d\right)}^{3}+{\left(2b^{3}-9abc+27c^{2}+27a^{2}d-72bd\right)}^{2} } } } }{54}\right)^{\frac{1}{3} }-\frac{-a^{3}+4ab-8c}{4{\sqrt{\frac{a^{2} }{4}-\frac{2b}{3}+\frac{2^{\frac{1}{3} }\left(b^{2}-3ac+12d\right)}{3{\left(2b^{3}-9abc+27c^{2}+27a^{2}d-72bd+{\sqrt{-4{\left(b^{2}-3ac+12d\right)}^{3}+{\left(2b^{3}-9abc+27c^{2}+27a^{2}d-72bd\right)}^{2} } }\right)}^{\frac{1}{3} } }+\left(\frac{ {2b^{3}-9abc+27c^{2}+27a^{2}d-72bd+{\sqrt{-4{\left(b^{2}-3ac+12d\right)}^{3}+{\left(2b^{3}-9abc+27c^{2}+27a^{2}d-72bd\right)}^{2} } } } }{54}\right)^{\frac{1}{3} } } } } } } \\ r_4 & =\frac{-a}{4}+\frac{1}{2}{\sqrt{\frac{a^{2} }{4}+\frac{2b}{3}+\frac{2^{\frac{1}{3} }\left(b^{2}-3ac+12d\right)}{3{\left(2b^{3}-9abc+27c^{2}+27a^{2}d-72bd+{\sqrt{-4{\left(b^{2}-3ac+12d\right)}^{3}+{\left(2b^{3}-9abc+27c^{2}+27a^{2}d-72bd\right)}^{2} } }\right)}^{\frac{1}{3} } }+\left(\frac{ {2b^{3}-9abc+27c^{2}+27a^{2}d-72bd+{\sqrt{-4{\left(b^{2}-3ac+12d\right)}^{3}+{\left(2b^{3}-9abc+27c^{2}+27a^{2}d-72bd\right)}^{2} } } } }{54}\right)^{\frac{1}{3} } } } \\ & -\frac{1}{2}{\sqrt{\frac{a^{2} }{2}-\frac{4b}{3}-\frac{2^{\frac{1}{3} }\left(b^{2}-3ac+12d\right)}{3{\left(2b^{3}-9abc+27c^{2}+27a^{2}d-72bd+{\sqrt{-4{\left(b^{2}-3ac+12d\right)}^{3}+{\left(2b^{3}-9abc+27c^{2}+27a^{2}d-72bd\right)}^{2} } }\right)}^{\frac{1}{3} } }-\left(\frac{ {2b^{3}-9abc+27c^{2}+27a^{2}d-72bd+{\sqrt{-4{\left(b^{2}-3ac+12d\right)}^{3}+{\left(2b^{3}-9abc+27c^{2}+27a^{2}d-72bd\right)}^{2} } } } }{54}\right)^{\frac{1}{3} }-\frac{-a^{3}+4ab-8c}{4{\sqrt{\frac{a^{2} }{4}-\frac{2b}{3}+\frac{2^{\frac{1}{3} }\left(b^{2}-3ac+12d\right)}{3{\left(2b^{3}-9abc+27c^{2}+27a^{2}d-72bd+{\sqrt{-4{\left(b^{2}-3ac+12d\right)}^{3}+{\left(2b^{3}-9abc+27c^{2}+27a^{2}d-72bd\right)}^{2} } }\right)}^{\frac{1}{3} } }+\left(\frac{ {2b^{3}-9abc+27c^{2}+27a^{2}d-72bd+{\sqrt{-4{\left(b^{2}-3ac+12d\right)}^{3}+{\left(2b^{3}-9abc+27c^{2}+27a^{2}d-72bd\right)}^{2} } } } }{54}\right)^{\frac{1}{3} } } } } } } \end{align}$$