(a)
$$3x^{2}+1 = -5x$$

(by amplifying the spuare)
 $3x^{2}+5x+1 = 0$
 $x^{2}+\frac{5}{3}x+\frac{1}{2} = 0$
 $x^{2}+\frac{5}{3}x+\frac{1}{2} = 0$
 $\left[x^{2}+\frac{5}{3}x+\frac{1}{2}=0$
 $\left[x^{2}+\frac{1}{3}x+\frac{1}{2}=0$
 $\left[x^{2}+\frac{1}{3}x+\frac{1}{2}=0$
 $\left[x^{2}+\frac{1}{3}x+\frac{$

(use Po Shen Leh)

$$\chi^{2}-4\chi-1=0$$

 $\Gamma_{1}+\Gamma_{0}=4$ — $\Gamma_{aug}=\frac{4}{2}=2$
 $\Gamma_{1}\cdot\Gamma_{2}=-1$
 $\chi^{2}-\chi$
 $(2+\omega)/(2-\lambda)=-1$
 $\chi^{2}-\zeta$
 $\chi=\pm\sqrt{5}$
 $\Gamma_{1}=2+(5)$
 $\Gamma_{2}=2-(5)$
 $\chi=2\pm\sqrt{5}$

$$(-1+4x)(-1-4) = -18$$

$$(-1+4x)(-1-4) = -18$$

$$(-1+4x)(-1-4) = -18$$

$$(-1+4x)(-1-4x) = -18$$

$$(-1+4x)(-1-4x) = -18$$

$$(1-4x)^2 = -18$$

$$(-1+4x)(-1-4x) = -18$$

$$(-1+4x)(-1-4x)(-1-4x) = -18$$

$$(-1+4x)(-1-4x)(-1-4x) = -18$$

$$(-1+4x)(-1-4x)(-1-4x) = -18$$

$$(-1+4x)($$

(a) Since
$$\frac{1}{2} = \frac{3}{2}$$

(b) $\frac{1}{2} (2s+1) - \log_2(s+1) = \log_2 x$
(c) $\frac{1}{2} (2s+1) - \log_2(s+1) - \log_2 x = 0$
(c) $\log_2(2s+1) - \log_2(s+1) - \log_2 x = 0$
(c) $\log_2(2s+1) - \log_2(s+1) - \log_2 x = 0$
(c) $\log_2(2s+1) - \log_2(s+1) - \log_2 x = 0$
(c) $\log_2(2s+1) - \log_2(s+1) - \log_2 x = 0$
(c) $\log_2(2s+1) - \log_2(s+1) - \log_2 x = 0$
(c) $\log_2(2s+1) - \log_2(s+1) - \log_2 x = 0$
(c) $\log_2(2s+1) - \log_2(s+1) - \log_2 x = 0$
(c) $\log_2(2s+1) - \log_2(s+1) - \log_2 x = 0$
(c) $\log_2(2s+1) - \log_2(s+1) - \log_2 x = 0$
(c) $\log_2(2s+1) - \log_2(s+1) - \log_2 x = 0$
(c) $\log_2(2s+1) - \log_2(s+1) - \log_2 x = 0$
(c) $\log_2(2s+1) - \log_2(s+1) - \log_2 x = 0$
(c) $\log_2(2s+1) - \log_2(s+1) - \log_2 x = 0$
(c) $\log_2(2s+1) - \log_2(s+1) - \log_2 x = 0$
(c) $\log_2(2s+1) - \log_2(s+1) - \log_2 x = 0$
(c) $\log_2(2s+1) - \log_2(s+1) - \log_2 x = 0$
(c) $\log_2(2s+1) - \log_2(s+1) - \log_2 x = 0$
(c) $\log_2(2s+1) - \log_2(s+1) - \log_2 x = 0$
(c) $\log_2(2s+1) - \log_2(s+1) - \log_2 x = 0$
(c) $\log_2(2s+1) - \log_2(s+1) - \log_2 x = 0$
(c) $\log_2(2s+1) - \log_2(s+1) - \log_2 x = 0$
(c) $\log_2(2s+1) - \log_2(s+1) - \log_2 x = 0$
(c) $\log_2(2s+1) - \log_2(s+1) - \log_2 x = 0$
(c) $\log_2(2s+1) - \log_2(s+1) - \log_2 x = 0$
(c) $\log_2(2s+1) - \log_2(s+1) - \log_2 x = 0$
(c) $\log_2(2s+1) - \log_2(s+1) - \log_2 x = 0$
(c) $\log_2(2s+1) - \log_2(s+1) - \log_2 x = 0$
(c) $\log_2(2s+1) - \log_2(s+1) - \log_2 x = 0$
(c) $\log_2(1 - \frac{1}{2s+1} - \frac{1}{s+1}$
(c) $\log_2(1 - \frac{1}{2s+1} - \frac{1}{s+1} - \frac{1}{s+1}$
(c) $\log_2(1 - \frac{1}{s+1} - \frac{1}{s+1} - \frac{1}$

(1)
$$\sqrt{\log_2(x) - 3} + \log_2(x) = 3$$

Strong $\log_2(x)$ is the place matrix
is under if the substitution angle help
recal sections.
We use that is the substitution angle help
recal sections.
We recall sections.
We reca