Solve the following equations (using the named method, if indicated):
$3x^2 + 1 = -5x$
$x^4-2=4x^2$
$\log_2 (x+5) + \log_2 (x-3) = \log_2 3$
$x^2 - 4x = 1$ (using Po Shen Lo's method)
$5t^2 - 8t = 3$ (by "completing the square")
$\displaystyle{\frac{x}{x+3}+\frac{x}{x+5} = \frac{2}{x^2+8x+15}}$
$5xe^{2x} = 3$ (using Lambert's W function)
$e^{2x} - 7e^x + 5$
$\log_3 (2x+1) - \log_3 (x-4) = \log_3 x$
$\displaystyle{\sqrt{\log_{\frac{1}{2}} (x) - 3} + \sqrt{\log_{\frac{1}{2}} (x)} = 3}$
$2x+\ln x = 3$ (using Lambert's W function)